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A Bayesian method of statistical analysis is presented, one which provides a more powerful approach than 
classical least squares in circumstances where hitherto the latter technique has been applied. The general 
principles of the method are discussed and applications to crystallographic refinement and primary reduction 
of diffractometer data given. 

Introduction 

The method of least squares finds many applications in 
crystallography. A sad comment - for most statisti- 
cians agree upon the poorness of this method of param- 
eter estimation (Stein, 1956: Marquardt, 1970; Lind- 
ley, 1971; Efron & Morris, 1977). Unfortunately, they 
do not agree upon what should be its replacement. 
Generalizing very broadly, present-day statistics is 
divided between two schools: the Bayesian and the 
frequentist. As may be gathered from the title, the 
method presented in this paper belongs to the former. 

Although tlae present controversy in statistics is not 
the subject of this paper, a few brief words are relevant. 
The dichotomy between Bayesian and frequentist is 
sharp. It is one of philosophy. The Bayesian's view of 
scientific methodology differs from that of the frequent- 
ist. The vast majority of applications of statistical tech- 
niques to crystallography have used the frequentist 
approach, as described in, for example, Hamilton 
(1964). The notable published exception is the work of 
Mendes & de Polignac (1973). Thus, in this paper I am 
not only explicitly presenting to you a new statistical 
technique, but probably also implicitly calling into 
question your scientific methodology. 

What is the Bayesian approach to inference? Clearly 
I cannot hope to answer this question in less than a 
book, certainly not in a paper. Anyway, there are some 
excellent books on Bayesian statistics on which I may 
draw: Box & Taio (1973), De Groot (1970), Jeffreys 
(1961), Lindley (1965). Barnett (1973)contrasts and 
compares the Bayesian and frequentist approaches in a 
very readable fashion. If you are not familiar with 
Bayesian ideas, I strongly urge you to read the early 
chapters of one of the above references before reading 
further in this paper. True, in the next section I briefly 
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introduce the basic principles of Bayesian statistics, but 
I do so only sufficiently to refresh a memory. Also, 
such a brief introduction is a most suitable vehicle for 
explaining my notation. 

The development in this paper continues with a 
discussion of the various sources of information that a 
crystallographer might wish to incorporate into a 
refinement. This motivates the structure of the Bayesian 
three-stage model introduced in § 3. In the following 
section crystallographic refinement is discussed as a 
Bayesian three-stage model. § 5 is by way of an aside. 
It illustrates, in the context of the refinement of heavy- 
atom sites used in isomorphous phasing of macro- 
molecules, some of the problems that extreme non- 
linearity may bring. In § 6 I show how the approach of 
the Bayesian three-stage model leads directly to a new 
method of reducing diffractometer data. § 7 contains 
my summary. 

1. Bayesian statistics 

A Bayesian and a frequentist are distinguished above 
all else by their different attitudes towards probability. 
For a Bayesian, at least in his role as a statistician, 
probability is simply a numerical representation of his 
degree of belief in a proposition about the system which 
he is observing. On the other hand, a frequentist holds 
that probability only has meaning as a numerical rep- 
resentation of the variability actually present in the 
observed system. This subtle distinction makes for the 
world of difference in their approaches to statistics. A 
Bayesian can clearly talk about his degree of belief in a 
scientific hypothesis or the value of a parameter, but a 
frequentist cannot, for there is no variation here. 
Nature either always does or always does not follow a 
hypothesis. Similarly, parameter values do not vary; 
they are fixed even if they are unknown. 
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For a Bayesian the primary objective of any 
statistical investigation is the generation of his degree of 
belief in some chosen aspect of the system under 
observation. This distribution of belief is based not only 
upon the evidence of his data, but also upon any 
information available from similar past investigations. 
Once he has developed this distribution, he can set 
about providing estimates of selected parameters, 
stating his belief in certain hypotheses or whatever. 

A Bayesian then handles all his information and 
knowledge through probabilities; they are his very 
language. Thus it is important to have a precise 
notation for probability statements, even though, alas, 
this precision is gained at the expense of simplicity. The 
next three paragraphs introduce a suitable notation. To 
gather all its subtleties, I stlggest you read them rapidly 
and then read them again rather more slowly. 

Throughout the paper I shall repeatedly need to write 
sentences of the form: 'My belief in the value of 
quantity X given that I know quantity y is represented 
by the probability distribution Px(. ly)'. For this I shall 
use the notation 

X ~ Px(.ly). (1.0) 

This distribution function is defined by: 

investigation. Let this prior knowledge be given by the 
distribution 

0 ~ Po(.) (1.4) 

with density function Po(.). Next I conduct an 
experiment that is informative on 0. By this I mean the 
following. Before the experiment, I ask myself: if I 
know the parameter value O, what is my distribution of 
belief in the as yet unmade observation Y? Suppose my 
reply 

Y ~ Py(.IO) (1.5) 

depends upon the value I choose for 0, then the 
experiment is informative on 0. I consider this question 
for each possible value of 0 and so generate my family 
of conditional distributions for Y. 

Suppose that I now observe Y = y; what should I 
believe about 0 in the light of this information? Put 
probabilistically, what is Po(. ly)? Bayes's theorem pro- 
vides the answer. (Hence the name 'Bayesian 
Statistics'.) In terms of density functions, this states 

Po(Oly) w. pr(ylO).po(O), (1.6) 
0 

Px(x ly) = prob(X < x ly) 

= the probability that X is no greater than x 
given that I know the quantity y. (1.1) 

The purpose of the '. ' in Px(. ly) in (1.0) is to emphasize 
that there I was referring to the entire distribution 
function. In (1.1) it is replaced by x because there I am 
referring to the value of the distribution function at a 
particular point. Thus (1.0) is a general statement of my 
knowledge of X in the light of my knowledge of y, 
whereas (1.1) is a statement of a particular facet of this 
knowledge. 

Corresponding to the distribution function Px(. ly)is 
the probability density function px(.ly), where, of 
course, 

x 

Px(xly)  = f px(tly) dt. (1.2) 
- - 0 0  

Note that throughout subscripts give the quantities 
about which I am expressing my beliefs. Quantities that 
(I assume) I know are given to the right of the con- 
ditional vertical stroke. If my beliefs about the quantity 
X are not conditioned upon my knowledge of some 
other quantity y, I write 

X ~ Px(.) (1.3) 

with Px(.) being the corresponding density function. 
Now to return to the subject in hand, what is the 

Bayesian approach to inference? Suppose that I am 
interested in some parameter 0. Before I carry out any 
investigations, I must have some knowledge of 0; other- 
wise I could not define 0, much less give direction to an 

where the notation oc o means 'is proportional to as a 
function of 0'. The constant of proportionality is easily 
found on remembering that a probability density must 
integrate to unity. 

In the barest essentials, I have quoted my joint 
distribution of belief in the observation Y and the 
parameter 0 prior to the experiment, viz 

where 

Y, 0 ~ ey, 0(.,.), (1.7) 

pr.o(y,#) = pr(ylO)po(O). (1.8) 

I have then derived from this joint distribution the con- 
ditional distribution of 0 given the observed value Y = 
y. This interpretation will be useful in § 3. 

It should be noted that throughout the above I have 
assumed that my distributions of belief obey sufficient 
conditions for Bayes's theorem to apply (see, for 
example, De Groot, 1970, ch. 3). 

Although my posterior distribution of belief repre- 
sents all my knowledge of a parameter, I am often 
required to state rather less than this, namely an 
estimate of the parameter or whether I would reject a 
certain null hypothesis concerning the parameter. For a 
full discussion of how I, as a Bayesian, should 
approach such requests, see, for example, De Groot 
(1970). ch. 11. In this paper, I simply ask you to accept 
that the mean and standard deviation of my posterior 
distribution for a parameter are reasonable as an 
estimate and a measure of its accuracy. 
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2. Crystallographic refinement (1) 

Before discussing the Bayesian three-stage model in its 
general form, it will be helpful to consider a particular 
example: crystallographic refinement. Here I am 
interested in the three-dimensional structure of a 
molecule as represented by its electron density, p(x), or, 
equivalently, the Fourier transform of this, F(p). 

The information, which I may wish to incorporate 
into a crystallographic refinement, breaks down rather 
naturally into three parts. 

Stage I. Observation error 

Firstly and rather obviously, I believe that my X-ray 
intensity observations are related to the structure 
factors of p(x). If l(p) is the vector of intensity 
observations and F(p) the corresponding vector of 
structure factors, then I shall have a distribution of 
belief: 

I(p) ~ P,(p)[.IF(p)]. (2.0) 

As in (1.5), this is my distribution of belief in the 
observations conditional on my assumed knowledge of 
F(p) prior to the experiment. Later on we shall use 
Bayes's theorem to invert this probability relation, so 
giving my belief in the structure factors conditional on 
my actual observations. Further discussion of the dis- 
tribution in (2.0) and those in (2.1) and (2.2) below is 
deferred to § 4. 

Stage II: Modelling error 

If I believe modern molecular theories then I helieve 
that p(x) has an atomic form, i.e. I believe that it may 
be well approximated by a parametric density, pro(x,13), 
where the only unknowns are contained in the vector of 
atomic parameters, 13. Because of the nature of 
crystallographic observations, it is convenient to take 
the Fourier equivalent of this statement, viz: from 
modern theories of molecular structure I believe that 
the Fourier transform of the true electron density, F(p), 
may be well approximated by the Fourier transform of 
the parametric density, F[pm(., 13)], in which the only 
unknowns are the atomic parameters, 13. Thus I have a 
distribution of belief 

F(p) ~ PF(p)(.113), (2.1) 

which expresses my degree of confidence in fitting the 
vector of structure factors of the true electron density at 
the points in reciprocal space at which I make intensity 
observations with structure factors derived from a 
parametric model of the molecule. 

Stage III: Prior knowledge of the parameters 

From previous structural investigations, both prac- 
tical and theoretical, I have available considerable 

information about bond lengths and angles, shape and 
volume parameters of specific dements, and the general 
vibrational characteristics of molecules; i.e. I know 
much about 13. Thus I have a distribution of belief 

13 ~ep(.), (2.2) 

which expresses my feelings a priori as to the relative 
merits of various conjectured structures. 

Thus, all the sources of information that I wish to 
incorporate into a crystallographic refinement are 
summarized by the three distributions of belief (2.0), 
(2.1) and (2.2). The question is: once I have observed 
actual values for l(p), how should I modify my belief 
about F(p) and 137 

3. The Bayesian three-stage model 

Let us now consider the general situation. Suppose 
prior to performing an experiment I have the following 
structure to my beliefs. 

Stage I 

I believe that the observations Y, which I shall make, 
are related to the parameter 01 by: 

Y ~P~.101). (3.0) 

Stage II 

I believe that in turn the parameter 01 is related to the 
parameter 02 by: 

01 ~P0,(.102). (3.1) 

Stage III 

Although I do not know e 2 exactly, I have a distri- 
bution of belief for it which expresses all my prior 
knowledge: 

02 ~ P02(.). (3.2) 

It is helpful to consider these three stages as 
representing the following information. 

Stage I: observation errors, i.e. my beliefs as to the 
reliability and accuracy of my measurements. 

Stage II: errors associated with the poorness of my 
physical model of the underlying situation. 

Stage III: prior knowledge of the parameters that are 
associated with the physical model that I have chosen. 

Combining the information in the three stages (3.0), 
(3.1) and (3.2), my joint distribution of belief in 
(Y,01,0 2) is given by 

py,0,,02(Y, 01, 02) = py(YI 01).p0,(011 02) p02(02). (3.3) 

Note that probability density functions are used in the 
above. 
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After I make the observation Y = y, my posterior 
joint distribution of belief in 01 and 02 conditional on y 
is given by [cf. (1.6) and (1.8)] 

p0,,02(0~, 02ly ) oc PY,0,,02(Y, 01, 02)- (3.4) 
0 . 0  2 

If 01 is the parameter that holds all my interest, then I 
may integrate the nuisance parameter 02 out of the joint 
density given in (3.4) and thus obtain my marginal 
posterior belief in 01, 

p0,(011Y) = fp0,.02(01,021 y) d02. (3.5) 

[For some cautionary remarks on considering marginal 
beliefs alone: see Box & Taio (1973) p. 71.] 

It is equally possible that 02 alone holds my interest, 
in which case I need my marginal posterior density: 

P02(021 y ) =  fp0,,o2(01,021Y) dO r (3.6) 

Thus after making the observation Y = y I may answer 
all questions concerning 01 and 02 by referring to the 
distributions given by (3.4), (3.5) and (3.6). 

Lindley & Smith (1972) and Smith (1973) have 
examined this three-stage model in considerable detail 
when the distributions involved are normal and the 
relations between the parameters are linear. Webb has 
extended their analysis to the case where some of the 
relations between the parameters are non-linear (Webb, 
1974). Both analyses are summarized in Appendix A. 
However, since it will be used much in the following, it 
is worth stating Webb's model here. 

The normal distribution will be denoted by 

X ~ N(la, V), (3.7) 

i.e. the random vector X has a normal distribution with 
mean It and covariance matrix V. 

Webb's model takes the form: 

stare I: Y ~ N[fl(01), C 1] (3.8) 

stage II: 0~ ~ N[f2(02), 122] (3.9) 

stage III: 02 ~ N[A303, 123]. (3.10) 

Assuming that I know the functions fl(-) and f2(.), the 
matrices A 3, 121, 122 and 123, and the vector 03, Webb 
deduces approximations to my marginal posterior dis- 
tributions for 01 and 02 after I have observed Y = y. 
The approximations, together with algorithms for their 
calculation, are presented in Appendix A. For the main 
development of the paper, however, it is sufficient 
merely to note the three-stage structure in (3.8), (3.9) 
and (3.10). 

When the distributions involved are less tractable 
than the normal, numerical techniques may be em- 
ployed unless, as is unfortunately true in crystallo- 
graphic cases, the dimensions of the vectors involved 
prevent this. 

4. Crystallographic refinement (2) 

Unless I am being particularly obscure, it should be 
apparent that the statistical framework for a crystal- 
lographic refinement given by relations (2.0), (2.1) and 
(2.2) is of the general form given by (3.0), (3.1) and 
(3.2) and discussed in the last section. However to be 
explicit: I(p) identifies with the observation Y, F(p) with 
the first parameter 01, and 13 with the second parameter 
02. The distributions of belief that are involved at each 
stage are now considered in greater, though not 
complete, detail. 

I shall reluctantly make the assumption that the 
distributions involved may be well approximated by 
multivariate normal distributions. My reluctance 
derives from my awareness that I make the assumption 
for reasons of computational tractability. Nonetheless it 
is the usual assumption and is probably not so un- 
reasonable, particularly in small-molecule in- 
vestigations. [See French (1975) for a full discussion.] 

Having made the assumption of normality, the three- 
stage model is of the form given by relations (3.8), (3.9) 
and (3.10) above. Thus I need only discuss the mean 
and covariance matrix at each stage in order to be able 
to use the iterative-solution procedure described in 
Appendix A. 

The first stage represents my belief in the relation be- 
tween the vector of intensity observations, l(p), and the 
vector of structure factors, F(p). As such it models not 
only the uncertainties arising from counting statistics 
(or photographic film error), but also those introduced 
in applying corrections for absorption, extinction, 
radiation damage and interlevel scale differences. In the 
following I shall assume that the corrected intensities 
are unbiased observations on the squared structure 
factor moduli. This may often be an unreasonable 
assumption, e.g. when ordinate analysis is used to 
reduce the data (Tickle, 1975; French, 1975) or when 
negative intensities have been set to zero. The 
covariance matrix, C 1 in (3.8), may be well approxi- 
mated by carefully inflating counting statistics accord- 
ing to the methods discussed in McCandlish, Stout & 
Andrews (1975), Dodson (1976a), and French (1975). 

The second stage describes my belief as to how well 
the parametric approximation to the molecular struc- 
ture actually corresponds with nature. The covariance 
structure at this stage is, at present, poorly investigated. 
Webb (1974) has made the suggestion of approximat- 
ing 122 [see (3.9)] with a21 where a 2 is set to (say) 10% 
of the current squared residual between the fitted 
structure factor moduli and the observed intensities. 
The sense of this suggestion can be seen by noting the 
better the fit in any refinement the smaller the 
uncertainty that is fed in at the second stage. This is dis- 
cussed at some length in French (1975). Blight & Ott 
(1975) discuss the general problem of 'approximation 
error' in terms of polynomial fitting. 
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The third stage represents my prior knowledge of 
bond angles and lengths, molecular symmetry and 
vibrational characteristics. It is a task far beyond my 
ability to suggest how this may be defined explicitly, 
but, fortunately, it is a very easy matter to approximate 
it at each cycle of the iterative solution of the non-linear 
three-stage model. Quite simply, I make the third stage 
express complete ignorance, i.e. C a -~ 0% and imagine 
that I can make observations directly upon the bond 
angles and lengths, symmetry relations and the tem- 
perature factors. These pseudo-observations take the 
values predicted from previous structural in- 
vestigations, both practical and theoretical, and the 
covariance structure describes the reliability I put in 
these predictions. This procedure is entirely analogous 
to augmenting the least-squares objective function with 
'soft constraints' (Waser, 1963; Rollett, 1970; Dodson, 
Isaacs & Rollett, 1976). The mathematically curious 
may use the inverse-function theorem (Rudin, 1964, p. 
193) to show the equivalence of using pseudo- 
observations and a vague third stage and of using a 
fully informative third stage. However, its good sense 
should be apparent. 

I have assumed in the above that I know the 
covariance matrices at the first and second stages, C 1 
and C 2. The former, C~, is the usual least-squares 
weighting matrix. A considerable proportion of 
crystallographic refinements do not use variance 
weighting schemes; instead they use either unit weights 
with all their associated horrors or 'sensible' weights, 
e.g. (klFobsl) -2 (Hamilton & Abrahams, 1970). I am 
opposed to this as it loses the individual error structure 
at each reflection that the careful data analysis referred 
to above can maintain. Furthermore, it becomes 
difficult to balance the weighting of the crystallo- 
graphic observations to the weighting of the pseudo- 
observations (soft constraints). I realize, however, that 
a careful, complete analysis of the data is very time 
consuming. Perhaps, therefore, a compromise is pos- 
sible. The shape of 121 can be kept from the early data 
reduction so that at refinement the matrix C 1 =trES is 
used, where $ is the known shape matrix and tr 2 is an 
unknown multiplicative constant, o 2 can be estimated 
during the refinement by the modal estimate method 
proposed in Lindley & Smith (1972). Webb's arbitrary 
10% of the squared residual for C 2 could be improved 
by a similar modal estimate. 

At the end of Appendix A, I make some remarks 
concerning the robustness of the above procedures to 
breakdowns in the assumptions. I think it is fair to say 
that if the covariance matrices at the first and second 
stages have about the right shape and balance then the 
approximations to the means of my posterior dis- 
tributions are robust to fairly large departures from 
normality and linearity. But the same does not apply to 
the approximations to my posterior standard 
deviations. These can be very sensitive to non- 

normality in particular (Kendall & Stuart, 1961, oh. 
31). The poorness of least-squares estimated standard 
deviations discovered by Hamilton & Abrahams 
(1970) can, perhaps, partly be attributed to such 
factors. Furthermore, as they remark, their least- 
squares refinement makes no allowance for the model- 
ling error, i.e. it does not include stage II of the Bayesian 
model. These remarks are not meant to discount their 
explanation on the basis of the undoubted systematic 
errors, but to complement it. 

To my knowledge, the work of Lindley, Milledge & 
Webb (1974) on small molecules is the only test of the 
above theory to data. Their results were extremely 
promising; the method converged well and produced 
results that were chemically very sensible. 

5. Heavy-atom refinement 

Obviously to use the Bayesian three-stage model, or 
least squares for that matter, to refine a structure, it is 
necessary to have intensity observations on the crystal. 
Unfortunately, this clear requirement is not always ful- 
filled. For instance, in the isomorphous replacement 
method of phasing macromolecules it is necessary to 
refine the heavy-atom difference structure between the 
derivative and native molecules without being able to 
observe its intensities directly. It is only possible to 
observe intensities on the derivative and native 
molecules. However, from these it is possible to 
calculate 'observations' on the difference structure's 
intensities. These calculated observations serve as the 
first stage of the three-stage model and, once their dis- 
tribution has been defined, the theory of the preceding 
section may be applied in its entirety. 

Before continuing some notation will be necessary. 
For a given reflection, let Ip, J e be the observed and 

+ + true native intensities; 1era Jell be the observed and true 
derivative intensities; I-~H,J-~x be the observed and true 
derivative intensities at the Friedel-related reflection; Ju 
be the true intensity of the difference structure. 

The problem is to find a function, Iu, of the actual 
intensity observations such that E[1H(I~,,I+pH, I-~u)] = 
Ju. The literature contains many suggestions for this 
function (Srinivasan, 1966; Singh & Ramaseshan, 
1966; Dodson & Vijayan, 1971; Kartha & 
Parthasarathy, 1965). Unfortunately, all the suggestions 
contain a common mistake. Essentially the authors 
have found a function such that 

IH(Je, J+H, J-PH) = JH 

and argued that since 

E( I . )  = J~,E(I+.)  = g~., E ( r ~ . ) =  g~.,  

it 'clearly' follows that 
E[IH(I~,I+H,I-pH)] = JH" (5.0) 
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Alas, such a conclusion is not only not clear but also 
false. 

To a second-order approximation (see Appendix B) 

E[In(Ip,  I+H,I-pH) ] = J z  + ½ trace (HV) + ..., (5.1) 

where H is the Hessian matrix of I H with respect to 
(I~, I+u, I-~H ) evaluated at (Je, J+z, J-~z), and V is the 
variance matrix of ( I  e, I+z, I-~H). Thus if ½ trace(HV) is 
significantly large, I z is a biased observation of JH. 

Dodson, Evans & French (1975) and French (1975) 
have investigated the size of this bias and found it to be 
considerable; in some cases it exceeds 200% of JH. We 
have suggested subtracting from each of the suggested 
I u the quantity ½ trace(HoV), where H 0 is the Hessian 
matrix of I H evaluated at the observed native and 
derivative intensities. In this way we have produced 
approximately unbiased 'observations' of J z  (Dodson, 
1976b). The approximation to the variance provided by 
(B.1) in Appendix B appears to be adequate for the 
refinement. With the first stage defined as indicated 
above, the methods of the previous section may be 
applied to solve the resulting three-stage model. 

It is a salutory exercise to consider the above a little 
more carefully. Essentially the mistaken assumption 
(5.0) is the result of expanding the function 
IH(Ip, I+H,I-~H) in a Taylor series about the mean 
values of I e, I+H and I-~z and then assuming that the 
second and higher-order terms are negligible. To obtain 
the more accurate expression (5.1), one is doing little 
better - only one more term is included. How many 
terms need be included depends upon how non-linear 
the function IH(I~,, I+H, I-~n ) is in the region to which 
the joint probability distribution of 1~,, l+z and 1-~z gives 
most of its mass. In linearizing any non-linear stage of 
the Bayesian three-stage model precisely similar con- 
siderations apply (see Appendix A). The moral is that, 
if one or more stages of the Bayesian model are 
particularly non-linear, the methods of Appendix A 
may be inappropriate and the user should be awake to 
this possibility. 

6. Diffraetometer intensity measurements 

Moving rather perversely from refinement to primary 
data reduction, I now introduce a method of 'integrat- 
ing the intensity under a diffractometer step-scan 
profile'. My discussion of refinement was of an 
interpretative nature, showing how existing refinement 
techniques can be viewed in terms of a Bayesian three- 
stage model. Here I intend to show how the Bayesian 
approach leads to a new method of primary data 
reduction that is more sensitive to the available 
information, and so produces more accurate integrated 
intensities, than previously used methods. 

In scanning a reflection, a diffractometer measures a 

sequence of counts as the detector steps through the 
diffraction peak: 

c i ~ Pci(.12i), i =  1, 2, ..., N, (6.0) 

where e i is the/th observed count, 2,. is the true (mean) 
count at the/ th step, N is the number of steps in the 
scan. The distributions Pci(.12i) for i = 1, 2 . . . .  , N are 
approximately independent Poisson with means 2i, but 
are slightly perturbed through 'instrument instability' 
and counting losses. 

Our current physical intuition suggests that the 2 i are 
related to the reflection's intensity through 

2i = Jz~(x i) + b(xi), (6.1) 

where J is the true intensity of the reflection; n(.) is the 
peak-shape function: 

f n ( x )  dx  = 1, 

b(.) is the background function; x i is the position of the 
ith count in the scan. The peak shape zr(.) and 
background b(.) are unknown functions. However, 
physical theory and experience do give certain guides to 
their form. For instance, the peak shape will be 
continuous and, in many cases, unimodal. Similarly, for 
0 scans the background may be expected to be roughly 
constant over the width of the scan. Let {zr(.,a)}, and 
{b(.,13)}p be two parametric families amongst which I 
may hope to find good approximations to zt(.) and b(.). 
For example, I have found that transformed normal 
probability densities (Johnson, 1949) are often suitable 
for ~z(.,a) and that linear functions serve for b(.,13). 

By now the first two stages of the Bayesian model 
should be becoming apparent. The first stage, represen- 
ting the observation error, will express the relation be- 
tween the c t and 2 t as given in (6.0). The second stage, 
representing the modelling error, will express the 
relation: 

/],l ~ Jn(xi,  a) + b(xi,13), (6.2) 

where a and 13 give suitable approximations to the 
particular peak shape and background at the reflection. 
The third stage is, perhaps, not so clear. 

The third stage should represent my prior knowledge 
of the parameters at the second stage, viz my prior 
knowledge of J, a and 13. Of J, the true intensity, I 
typically know nothing, but of a and 13 1 may have con- 
siderable knowledge. Consider first the peak shape 
parameter a. Once I have fitted a few reflections, I will 
known much about a because Diamond (1969) has 
shown that the peak shape varies slowly through 
reciprocal space. Furthermore, the position within the 
scan of the peak last fitted and the reliability of the 
diffractometer in moving between reflections will also 
contribute to my knowledge of a. For the background 
parameter [3 1 may have prior knowledge in the form of 
a smoothed background function (see, for example, 
Krieger, Chambers, Christoph, Stroud & Trus, 1974). 



734 A BAYESIAN THREE-STAGE MODEL IN CRYSTALLOGRAPHY 

Hopefully the partial sketch of the three-stage model 
given above will provide an adequate introduction to 
the more detailed description of it given below. 
However, I should state at this point that I have no 
intention of describing the practical details here. My 
sole purpose is to demonstrate the statistical modelling 
involved. Details of the implementation must await a 
further paper, although they are already presented in 
French (1975). 

Stage I: Observation error 

This stage is essentially the relation (6.0). However, 
for convenience the observations are transformed by 
taking their square root. This is done because I intend 
to use Webb's three-stage model (3.8-3.10). For this to 
be applicable, the distributions at each stage need to be 
normal and the covariance matrices need to be known 
and independent of the parameters. Were the obser- 
vations here left untransformed, these conditions would 
be unsatisfied. Assuming that only errors from counting 
statistics are present, I have to a good approximation 
(Box & Taio, 1973, Fig. 1.3.8) 

e~ ~N(x/2 ~, 0.25). (6.3) 

Stage I should also include a contribution from 
machine instability and counting losses. The latter I 
shall ignore here, as they are outside my realm of 
experience in protein crystallography. McCandlish, 
Stout & Andrews (1975), amongst others, have argued 
that machine instability gives rise to approximately 
constant relative errors in the counts. This I can model 
in (6.3) simply by inflating the variance so that 

v /c i~  N[v/2  i, 0.25(1 + cr~2i)]. (6.4) 

Admittedly the variance now depends on the parameter 
2~, but the dependence is very slight since a~ ~_ 0.0001 
usually. Such a slight departure from constant 
variances causes Webb's procedure no problems. At 
each non-linearity cycle of the algorithm, the unknown 
parameter 2~ in the variance can be estimated from the 
second-stage parametric approximation: 

Pi = J n ( x i ,  cl) + b (x i ,~ ) .  (6.5) 

I indicate below how the relative variance, try, may be 
estimated. 

Stage II: Modell ing error 

At this stage the true count 2i is modelled with the 
parametric approximation v~. It seems reasonable to 
expect the magnitude of the modelling error to increase 
with the true count. Indeed, I shall assume more than 
this. I shall take the modelling error to have constant 
relative variance. Thus the variance of 2~ conditional on 
v i is given by: 

var(2il v/) = tr2~. (6.6) 

The correlations between the errors at adjacent steps 
will depend on the smoothness which I expect the true 
curves to exhibit and the separation of the steps con- 
sidered. Blight & Ott (1975) have discussed how these 
correlations may be modelled. They have shown that 
there is much advantage to be gained from including 
them in the three-stage model when the size of the error 
involved at the second stage is of the same or greater 
order than that at the first stage. However, that is not 
the case here; except for the summits of the largest 
diffraction peaks, counting errors dominate the errors 
from poor modelling. Consequently, I take advantage 
of the computational gains afforded by assuming the 
modelling errors to be uncorrelated at different steps. 

In order to make the relation between the first and 
second stages linear and also to reduce the dependence 
of the second-stage variance on v i, square roots are 
taken. I assume normality: 

vO., ~ N ( v/v i, 0.25a~v.,). (6.7) 

In solving the three-stage model, it is found that the 
unknown relative variances a~ and tr~ enter only 
through their sum. Thus it is only necessary to obtain 
an estimate of (a~ + a~). This can be done by iteratively 
adjusting (a~ + a~) in the fitting of the first few 
reflections in a data set until the standardized residuals 
have approximately unit variance. I have found it quite 
satisfactory to use the value obtained for (a~ + a~) for 
the remainder of the data set. 

Stage III: Prior knowledge 

It is here that the information gained from previous 
fits of diffraction peaks is incorporated. I shall assume 
that my prior knowledge of J, a and [3 is independent 
and that my knowledge of J is vague, i.e. I know 
nothing about J. Specifically I assume 

Ps,~,~(.) oc p,(.)pp(.). (6.8) 

p~(.) contains all the information that I have learnt 
about the peak shape and its position within the scan. 
Suppose I am fitting the sth reflection. From the fit at 
the (s -- 1)st reflection, I have the marginal posterior 
distribution p~(.les_l), which contains all my current 
information about the peak shape and position. In 
moving to the sth reflection I must weaken my belief 
according to the reliability of the diffractometer and the 
variability of peak shape that I believe to exist over 
reciprocal space. To do this I assume that p~(.) is 
normal with mean (expectation) and covariance matrix: 

E(ot) = SsE(a l e  s_ 1) + Acts (6.9) 

var(a) = Ssvar(alc s_ 0S  r + var(Aas), (6.10) 

where S s is a shift matrix that allows for changes in 
scale (step size) and predictable variation in peak 



SIMON FRENCH 735 

shape, e.g. width; Aa s allows for predictable shifts in the 
peak parameters, e.g. position; var(Aas) weakens my 
distribution of belief according to my trust in the 
predicted shifts and the reliability of the diffractometer. 

In defining P13(.) I can choose to do one of the 
following. (i) Use a method similar to that for p~(.) 
above, i.e. I can remember the values of previously 
fitted backgrounds. This would be a partial smoothing 
of the background. (ii) Use a vague prior, i.e. assume 
that the background is so variable compared with the 
accuracy that it can be determined within one scan that 
it is not worth 'learning' the background from previous 
peaks. (iii) Use a smoothed background function (see, 
for example, Krieger, Chambers, Christoph, Stroud & 
Trus, 1974). 

Again I shall assume that the distribution is normal. 
The description of the three-stage model is now 

complete, or, at least, in as great a detail as I intend to 
give here. In addition to the raw counts themselves, the 
Bayesian method has incorporated four other sources 
of information: (i) the local behaviour of the back- 
ground that may be expected from the collection 
geometry; (ii) properties expected in the peak shape; 
(iii) the shapes of the peaks already analysed; (iv) the 
position within the scan of the peak last analysed and 
the reliability of the diffractometer in moving between 
reflections. If a multiple-counter diffractometer is used, 
there is one further source of information: (v) the 
relative positions of peaks within simultaneously 
collected scans are defined by the diffraction geometry. 
Furthermore, the peak shape and, perhaps, the back- 
ground will be roughly common to all counters. With 
the exception of the work of Diamond (1969), none of 
the standard data-reduction methods take account of 
all these sources of information, and even Diamond 
does not utilize them to the full. The Bayesian method 
incorporates them all. 

7. Discussion 

My purpose in this paper has been to introduce the 
Bayesian three-stage model to crystallographers in the 
hope that they might find it a more useful statistical tool 
in circumstances where they would usually resort to the 
principle of least squares. I am convinced that once the 
Bayesian method is fully understood, it gives one a very 
simple, natural and powerful method of firing a 
scientific model to data.The applications to refinement 
and diffractometer intensity measurement have, I hope, 
illustrated this. Clearly there are further applications. 
For instance, in estimating the absorption correction of 
Huber & Kopfmann (1968, 1969), one could, through 
the third stage of the Bayesian method, require the 
fired absorption surface to be smooth, thus avoiding 
their ad hoc smoothing method. 

I am grateful to Professors D. V. Lindley and A. J. 
C. Wilson, Drs R. Diamond, J. S. Roller and G. I. 
Webb for many helpful discussions. All my com- 
panions in the Laboratory of Molecular Biophysics 
provided much help and advice. The referee of an 
earlier draft of this paper was also particularly helpful 
in his criticism. 

During 1972-74 I was supported by the Medical 
Research Council and during 1974-76 by the Hayward 
Foundation and Oriel College. 

A P P E N D I X  ,4 
The Bayesian three-stage model with normal uncertain- 

ties 

Smith (1973) has summarized the Bayesian three-stage 
model with normal distributions of belief over linear 
relations between the parameters as: 

stage I: Y ~ N(AIO ~, C~) (A.1) 

stage II: 01 ~ N(A20z, C2) (A.2) 

stage III: 0 z ~ N(A303, C3) , (A.3) 

where the notation X ~ N(Ia, V) has been used to 
indicate that X has a normal distribution of belief with 
mean !~ and covariance matrix V. It is possible to add 
further stages ad infinitum (or nauseam), but for our 
purposes three stages are sufficient. Assuming that I 
know (i.e. my uncertainty is negligible) the matrices 
{Ai, Ci; i = 1, 2, 3} and the parameter 03, my marginal 
posterior distributions for 01 and 02 after an observation 
Y = y are given by [see equations (3.5) and (3.6)]: 

Po,(.ly) is N(0*, D1), (A.4) 

where 

O]-X~l = I~i-1~1 + (C 2 + AEC3AT)-~AEA303 (A.5) 
D]- I=  ~-1 + (C 2 + A2C3AT)-~ (A.6) 

O11~Jl : A~'CT~y (a.7) 
D~ -1 = ATC11A1; (A.8) 

and 

P0,(.ly) is N(~ ,  Oz), (A.9) 

where 

1~2 ~0~2 = fi21~2 + C~1A303 (A.10) 
02 ~= D21 + C~ 1 (A.11) 

fi~-l~2 = A2rA~r(C, + A1CEA~)-'y (A.12) 

022 = A2rA,r(c~ + AlC2A~r)-~A~A2 . (A.13) 

The derivation of these results is given in Lindley & 
Smith (1972) and Smith (1973). 

The vectors ~l and ~12 are the usual least-squares 
estimates of the parameters 01 and 02. From (A.5) and 
(A. 10) it can be seen that the posterior means ~ and 0~' 
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are weighted averages between the least-squares esti- 
mates and the values for the parameters predicted by 03 . 
Furthermore, the weighting is done in an intuitively 
sensible way, being based on the sampling variances of 
the least-squares estimates and the prior variances 
induced from the third stage. 

If I know little about 02 prior to the experiment, then 
I want stage III of the model to express this ignorance. 
Formally this can be done by letting C3 ~ --, 0, i.e. by 
letting my prior spread of belief at the third stage 
become arbitrarily large. In this case it may be shown 
that (Smith, 1973): 

~ =  (ArCT1A, + C;l)-l(A~rL"i-~ 1A1~}I + CS2'A=~=) (A.14) 
D~-I A~C~-IA1 + C~21 1 r 1 -1 r 1 = _ ~ A~_(A2 ~ Az) A2 

and (A.15) 

= (A.16) 
D~-'= 5; 1. (A.17) 

Thus, in the case of prior ignorance it can be seen 
that the mean of my posterior belief for 02 is the usual 
least-squares estimate, whilst that for 0~ is a weighted 
average of the least-squares estimate for 01 and the 
value of 01 predicted by the least-squares estimate of 02. 
The Bayesian analysis is clearly holding on to the 
underlying structure rather better than the least-squares 
analysis. 

Unfortunately it seldom happens in practice that the 
relations between the parameters are linear. In the more 
usual case at least one of the first two stages is non- 
linear. Webb (1974) has considered the model: 

stage I: Y ~ N[fl(0,) , C,] (A.18) 

stage II: 01 ~N[f2(09, C2] (A. 19) 

stage III: 02 ~ N[A303, Ca]. (A.20) 

If the functions f~ and f2 are approximately linear in the 
regions in which my posterior densities are con- 
centrated, then the theory of the linear model given 
above may be used to provide approximations to the 
posterior distributions for the non-linear model. Sup- 
pose that ~,0 and 0"2,0 lie near 0* and ~ respectively, 
then expanding to the first two terms in the Taylor 
series for the functions fl and f2: 

f~(O~) ,-, f~(O*o) + (0"o)(0~ 0~.o). (A.21) 
-i  

Using (A.21) we may rewrite the model given by 
(A. 18), (A. 19) and (A.20) approximately as: 

stage I: X ~ N(A 1 (pt, C1), (A.22) 

where 

X = Y--fl(0*,o)--  All2(02* o ) 

+ A10~o + A1A20~, o (A.23) 

stage II: 

where 

stage III: 

where 

AI = ff~ (01" 0); (A.24) 

~, ~ N(A2q}2, CO, (A.25) 

9a = 0 1 -  fz(0*,o) + A2 ~2,o (A.26) 

0* A2 = ff~2 ( 2.o); (A.27) 

~ N(A303, C3), (A.28) 

92 = 02 (A.29) 

93 = 03. (A.30) 

The matrices C I and C 2 should be inflated to allow for 
the errors in the linear approximations in (A.21), 
although this is seldom done simply because it is not 
clear how to do so. Webb (1974) makes some very 
reasonable suggestions for doing this which seem to 
work well in his particular examples of crystallo- 
graphic refinement. 

Depending on my state of prior knowledge, either 
(A.4) to (A.13) or (A.14) to (A.17) give my posterior 
beliefs in (~1 and 92 with means 9" and 9*. Replacing 
0* and ~ 0  with 1,0 

0* =q~* + f:(0*0 ) -  A2~ 0 (A.31) 1,1 

0~2,1 = ~0~ ( A . 3 2 )  

the approximate linearization in (A.21) to (A.30) may 
be repeated and the entire process iterated until the 
shifts (8~*j - O~.j_ 1) (i = 1, 2; j = current shift) become 
small compared with the posterior standard deviations 
given by the current approximations, D~,j and D2.j, 
to the posterior covariance matrices, O I and D z. 
Supposing that the process converges at the kth cycle, 
my marginal posterior beliefs may be approximated by 

01 ~ N(~.  k, O,,~) (A.33) 

02 ~ N(0*.k, O2.k). (A.34) 

In the above it has been assumed that I know the 
matrices {Ci; i -- 1, 2, 3 }. This is not usually the case. 
Theoretically I should place a distribution of belief a 
priori over these nuisance parameters and then inte- 
grate them out of my posterior distribution of belief. 
However, in crystallographic cases my uncertainty in 
the C t is several orders less than my uncertainty in the 
parameters of interest and it is, apparently, sufficient to 
use approximations to the C i derived from counting 
statistics and careful data analysis (French, 1975; 
McCandlish, Stout & Andrews, 1975; Dodson, 1976a). 
See also Lindley & Smith (1972). 

The quality of the approximation to my posterior 
distribution depends on three factors: (i) the amount of 
non-linearity exhibited by the functions ft over the 
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region of highest posterior density, i.e. the quality of the 
linear approximations to the f/afforded by (A.21); (ii) 
the accuracy of my approximations to the el; (iii) the 
degree of non-normality actually present in my uncer- 
tainty. [Strictly, under the assumptions in (A.18), 
(A.19) and (A.20) all the distributions involved are 
normal, but in practice I have to make the assumption 
that any departures from normality in my beliefs will 
not seriously affect my posterior beliefs.] 

If any of these assumptions breaks down seriously, 
then I have no reason to expect the above theory to 
apply. How much trust may I place in the approxi- 
mations (A.33) and (A.34) then? As with all important 
questions, this is to a large extent unanswered. From 
the literature it seems safe to say that ~ k and 0* , 2, k are 
approximations to the means of my posterior dis- 
tributions that are robust to fairly large breakdowns in 
my assumptions. Unfortunately the same does not seem 
to apply to DLk and D2. k (Kendall & Stuart, 1961, ch. 
31). So whilst I may be fairly safe in stating where I 
think the parameters lie, remarks concerning the 
precision of my beliefs may be unsound. It is important 
to realise that these comments, somewhat translated, 
apply equally well to a least-squares analysis of the 
model. 

A P P E N D I X  B 
Approximations to the mean and variance o f  a real 

function of  a random vector 

Let f :  Dc/R" --,/R be a smooth, well behaved function, 
i.e. possess all the properties of continuity and 
differentiability I need below. 

Let X E A n be a random vector such that Pr(X E D) 
= 1. Furthermore, let the first two moments of X exist 
and be finite: 

E(X) = It 

var(X) = V. 

Set Z = (X - ~t), then by Taylor's expansion in D: 

f ( X )  = f(Ix) + ZrVf(~t) + ½(Zr V)2f(lx) + ... 

Setting 
H=( •2f (.)) 

 ax, 
and taking expectations: 

E [ f ( X ) ] -  f() t )  + ½ trace(HV) + ... (B.0) 

Thus, to a second-order approximation, f ( X )  is a 
biased observation on f(~t) by an amount ½ trace (HV). 

Similarly, to the first order: 

var[f(X)]  = trace(GV) + ... (B.1) 

where 

To calculate a second-order approximation to the 
variance of f ( X ) ,  the fourth moments of X arc 
required. 
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Diffraction by Crystals with Planar Faults. 
III. Structure Analyses Using Microtwins 

BY J. M. COWLEY AND ANDREW Y. Au 

Department o f  Physics, Arizona State University, Tempe, Arizona 85281, USA 
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The general theory for kinematical diffraction from crystals having planar faults is applied to the case of 
microtwinning and the related cases occurring in some minerals where there is a disordered sequence of two 
types of structure having small differences in composition, unit-cell dimensions and axial orientations. It is 
shown that, if intensities are measured for unresolved or partially resolved pairs of diffraction spots using 
conventional techniques, errors may well arise if the measurements are interpreted on the usual assumption 
that the intensities from the different crystal regions are summed incoherently. Calculations for representative 
cases suggest that errors, due to the neglect of the spreading of intensity maxima into continuous streaks, may 
amount to 20 or 30% when overlapping diffraction spots have structure amplitudes of opposite sign, but are 
usually much smaller, especially if the structure amplitudes are of the same sign. 

In the first paper of this series [(Cowley, 1976a, here- 
inafter referred to as (I)] a general theory for 
kinematical diffraction from crystals having planar 
faults was presented. Applications to particular types of 
faults were given there and in the second paper of this 
series (Cowley, 1976b). These applications should be 
sufficient to illustrate the derivation of expressions 
appropriate to special cases from the general theory 
and it is not our intention to multiply examples. How- 
ever in the course of discussions with Drs Gabrielle and 
J. D. H. Donnay on the interpretation of electron 
diffraction patterns from feldspars the question was 
raised as to the influence of microtwinning on the 
intensities which would be measured and used in the 
course of an X-ray diffraction structure analysis. We 
have therefore considered an idealized case of this kind 
and attempted to estimate the magnitude of any errors 
which might result from the application of accepted 
practices of structure an alysis. 

There are many cases reported in the literature for 
which it appears that twin planes occur more or less at 
random and, on the average only a few unit cells apart. 
One case, illustrated graphically by high-resolution 
electron microscopy, is that of monoclinic enstatite 

(Iijima & Buseck, 1976). In this case the two orienta- 
tions of the monoclinic a axis differ by a sufficiently 
large angle to allow most pairs of related diffraction 
spots to be clearly separated, although there is 
considerable diffuse streaking intensity between them. 

For some of the feldspars the separation of axial 
orientations may be very much smaller. The evidence 
of variation of axial orientations is not clear from dif- 
fraction patterns but may be deduced from the irregular 
mottling of electron-microscope images (the 'tweed' 
structure). For bytownite (McLaren & Marshall, 1974) 
the variation in orientation of the unit-cell axes over 
distance of the order of 100/~ appears to accompany 
compositional variations associated with an exsolution 
process. Similar orientational variations appear to be 
present in a Himalaya mine orthoclase (Prince, 
Donnay & Martin, 1973), giving rise to a tweed 
structure in high-resolution electron micrographs (Ii- 
jima, private communication), but it is not clear 
whether a compositional variation is involved in thi,~ 
case. 

For convenience we continue our discussion in terms 
of 'twins', but the treatment will not exclude such cases 
involving variations of composition as well as small 


